PyTEI package
The main TEIClient
class
The TEIClient is used to interface with a Text Embeddings Inference instance and is thus the main user-facing class.
Submodules
The pytei.store module
Use EmbeddingStore`s for caching embeddings. The `InMemoryEmbeddingStore serves as default in-memory cache. Use the DuckDBEmbeddingStore for persistent caching. Custom EmbeddingStore`s can be implemented by extending the abstract `EmbeddingStore base class.
- class pytei.store.EmbeddingStore[source]
Bases:
ABC
Abstract interface for a key-value store.
- abstract get(key: str) ndarray [source]
Get the embedding associated with the specified key. Raises KeyError if the key is not found. :param key: The key to get the embedding for. :type key: str :return: The embedding associated with the specified key. :rtype: numpy.ndarray
- abstract get_all(keys: Collection[str]) Dict[str, ndarray] [source]
Get the embeddings associated with a set of keys. Returns a dictionary of all found key-value pairs. :param keys: The keys to get embeddings for. :type keys: Collection[str] :return: The embedding associated with the specified key. :rtype: numpy.ndarray
- abstract put(key: str, value: ndarray) None [source]
Store the embedding associated with the specified key. :param key: Identifier of the embedding. :type key: str :param value: Embedding to store. :type value: numpy.ndarray
- class pytei.store.InMemoryEmbeddingStore[source]
Bases:
EmbeddingStore
In-memory key-value store for embeddings.
- get(key: str) ndarray [source]
Get the embedding associated with the specified key. Raises KeyError if the key is not found. :param key: The key to get the embedding for. :type key: str :return: The embedding associated with the specified key. :rtype: numpy.ndarray
- get_all(keys: Collection[str]) Dict[str, ndarray] [source]
Get the embeddings associated with a set of keys. Returns a dictionary of all found key-value pairs. :param keys: The keys to get embeddings for. :type keys: Collection[str] :return: The embedding associated with the specified key. :rtype: numpy.ndarray
- put(key: str, value: ndarray)[source]
Store the embedding associated with the specified key. :param key: Identifier of the embedding. :type key: str :param value: Embedding to store. :type value: numpy.ndarray
- class pytei.store.DuckDBEmbeddingStore(db_path: str = 'datastore.duckdb')[source]
Bases:
EmbeddingStore
Persistent key-value store using DuckDB as backend.
- get(key: str) ndarray [source]
Get the embedding associated with the specified key. Raises KeyError if the key is not found. :param key: The key to get the embedding for. :type key: str :return: The embedding associated with the specified key. :rtype: numpy.ndarray
- get_all(keys: Collection[str]) Dict[str, ndarray] [source]
Get the embeddings associated with a set of keys. Returns a dictionary of all found key-value pairs. :param keys: The keys to get embeddings for. :type keys: Collection[str] :return: The embedding associated with the specified key. :rtype: numpy.ndarray
- put(key: str, value: ndarray)[source]
Store the embedding associated with the specified key. :param key: Identifier of the embedding. :type key: str :param value: Embedding to store. :type value: numpy.ndarray
The pytei.model module
The model defines the structure of the data returned by the TEIClient.
- class pytei.model.PredictionResult(label: str, score: float)[source]
Bases:
object
- label: str
- score: float
- class pytei.model.Rank(index: int, score: float, text: str | None = None)[source]
Bases:
object
- index: int
- score: float
- text: str | None = None